Rotationally inelastic dynamics of LiH (X1Σ+, v = 0) in collisions with Ar: State-to-state inelastic rotational rate coefficients

نویسندگان

  • Aliou Niane
  • Cheikh Amadou Bamba Dath
  • Ndèye Arame Boye Faye
  • Kamel Hammami
  • Nejm-Eddine Jaidane
چکیده

A theoretical study of rotational collision of LiH(X(1)Σ(+),v = 0, J) with Ar has been carried out. The ab initio potential energy surface (PES) describing the interaction between the Ar atom and the rotating LiH molecule has been calculated very accurately and already discussed in our previous work [Computational and Theoretical Chemistry 993 (2012) 20-25]. This PES is employed to evaluate the de-excitation cross sections. The ab initio PES for the LiH(X(1)Σ(+))-Ar((1)S) Van der waals system is calculated at the coupled-cluster [CCSD(T)] approximation for a LiH length fixed to an experimental value of 3.0139 bohrs. The basis set superposition error (BSSE) is corrected and the bond functions are placed at mid-distance between the center of mass of LiH and the Ar atom. The cross sections are then derived in the close coupling (CC) approach and rate coefficients are inferred by averaging these cross sections over a Maxwell-Boltzmann distribution of kinetic energies. The 11 first rotational levels of rate coefficients are evaluated for temperatures ranging from 10 to 300 K. We notice that the de-excitation rate coefficients appear large in the order 10(-10) cm(-3) s(-1) and show very low temperature dependence. The rate coefficients magnify significantly the propensity toward ∆ J = -1 transitions. These results confirm the same propensity already noted for the cross sections.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quenching of rotationally excited CO by collisions with H2.

Quantum close-coupling and coupled-states approximation scattering calculations of rotational energy transfer in CO due to collisions with H2 are presented for collision energies between 10(-6) and 15,000 cm(-1) using the H2-CO interaction potentials of Jankowski and Szalewicz [J. Chem. Phys. 123, 104301 (2005); 108, 3554 (1998)]. State-to-state cross sections and rate coefficients are reported...

متن کامل

ar X iv : p hy si cs / 0 50 91 97 v 1 2 3 Se p 20 05 Atom - molecule collisions in an optically trapped gas

Cold inelastic collisions between confined cesium (Cs) atoms and Cs2 molecules are investigated inside a CO2 laser dipole trap. Inelastic atom-molecule collisions can be observed and measured with a rate coefficient of ∼ 2.5× 10 cm s, mainly independent of the molecular ro-vibrational state populated. Lifetimes of purely atomic and molecular samples are essentially limited by rest gas collision...

متن کامل

Steric asymmetry and lambda-doublet propensities in state-to-state rotationally inelastic scattering of NO„P1Õ2... with He

Relative integrated cross sections are measured for rotationally inelastic scattering of NO(P1/2), hexapole selected in the upper L-doublet level of the ground rotational state ( j50.5), in collisions with He at a nominal energy of 514 cm. Application of a static electric field E in the scattering region, directed parallel or antiparallel to the relative velocity vector v, allows the state-sele...

متن کامل

Inelastic low-energy collisions of electrons with HeH+: Rovibrational excitation and dissociative recombination.

Inelastic low-energy (0-1 eV) collisions of electrons with HeH+ cations are treated theoretically, with a focus on the rovibrational excitation and dissociative recombination (DR) channels. In an application of ab initio multichannel quantum defect theory, the description of both processes is based on the Born-Oppenheimer quantum defects. The quantum defects were determined using the R-matrix a...

متن کامل

Steric asymmetry and lambda-doublet propensities in state-to-state rotationally inelastic scattering of NO(2Pi(1/2)) with He.

Relative integrated cross sections are measured for rotationally inelastic scattering of NO(2Pi(1/2)),hexapole selected in the upper lambda-doublet level of the ground rotational state (j = 0.5), in collisions with He at a nominal energy of 514 cm(-1). Application of a static electric field E in the scattering region, directed parallel or antiparallel to the relative velocity vector v, allows t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2014